Create the sparse triangular matrix U for multivariate Vecchia models
Source:R/PrestoGP_CreateU_Multivariate.R
createUMultivariate.Rd
This creates the sparse triangular matrix U for multivariate Vecchia
models. This matrix can be used to estimate the likelihood or transform
the data to be iid. This function is a multivariate version of
createU
.
Arguments
- vec.approx
Object returned by
vecchia_Mspecify
.- params
Vector of covariance parameters. See
create_param_sequence
or the examples below for details about the format of this vector.- cov_func
The function used to compute the covariance between two observations. Defaults to a Matern model.
Value
A list containing the sparse upper trianguler U, plus additional objects required for other functions.
Details
This function will be much slower if a non-default cov_func is specified. More importantly, there is no guarantee that the resulting covariance matrices will be positive definite. We recommend using the default (Matern) covariance function unless you know exactly what you are doing. See Apanasovich et al. (2012) for a description of how the cross-covariances are computed.
References
Apanasovich, T.V., Genton, M.G. and Sun, Y. "A valid Matérn class of cross-covariance functions for multivariate random fields with any number of components", Journal of the American Statistical Association (2012) 107(497):180-193.
Katzfuss, M., and Guinness, J. "A general framework for Vecchia approximations of Gaussian processes", Statistical Science (2021) 36(1):124-141.
Examples
data(soil)
soil <- soil[!is.na(soil[,5]),] # remove rows with NA's
locs <- as.matrix(soil[,1:2])
locsm <- list()
locsm[[1]] <- locsm[[2]] <- locs
soil.va <- vecchia_Mspecify(locsm, m=10)
pseq <- create_param_sequence(2)
# Initialize the vector of covariance parameters
params <- rep(NA, pseq[5,2])
# Sigma parameters:
params[pseq[1,1]:pseq[1,2]] <- c(100, 80)
# Scale parameters:
params[pseq[2,1]:pseq[2,2]] <- c(60, 50)
# Smoothness parameters:
params[pseq[3,1]:pseq[3,2]] <- c(0.5, 0.5)
# Nuggets:
params[pseq[4,1]:pseq[4,2]] <- c(30, 30)
# Correlation:
params[pseq[5,1]:pseq[5,2]] <- -0.9
soil.u <- createUMultivariate(soil.va, params)