Skip to contents

This method prints a summary of a PrestoGP model and its parameters.

Usage

# S4 method for class 'PrestoGPModel'
show(object)

Arguments

object

The PrestoGP model object

Examples

data(soil)
soil <- soil[!is.na(soil[,5]),] # remove rows with NA's
y <- soil[,4]                   # predict moisture content
X <- as.matrix(soil[,5:9])
locs <- as.matrix(soil[,1:2])

soil.vm <- new("VecchiaModel", n_neighbors = 10)
soil.vm <- prestogp_fit(soil.vm, y, X, locs)
#> 
#> Estimating initial beta... 
#> Estimation of initial beta complete 
#> 
#> Beginning iteration 1 
#> Estimating theta... 
#> Estimation of theta complete 
#> Estimating beta... 
#> Estimation of beta complete 
#> Iteration 1 complete 
#> Current penalized negative log likelihood: 486.7002 
#> Current MSE: 9.104869 
#> Beginning iteration 2 
#> Estimating theta... 
#> Estimation of theta complete 
#> Estimating beta... 
#> Estimation of beta complete 
#> Iteration 2 complete 
#> Current penalized negative log likelihood: 486.3541 
#> Current MSE: 9.107815 
#> Beginning iteration 3 
#> Estimating theta... 
#> Estimation of theta complete 
#> Estimating beta... 
#> Estimation of beta complete 
#> Iteration 3 complete 
#> Current penalized negative log likelihood: 486.3306 
#> Current MSE: 9.108282 
#> Beginning iteration 4 
#> Estimating theta... 
#> Estimation of theta complete 
#> Estimating beta... 
#> Estimation of beta complete 
#> Iteration 4 complete 
#> Current penalized negative log likelihood: 486.3306 
#> Current MSE: 9.108079 
show(soil.vm)
#> Matern covariance parameters (theta): 
#> $sigma
#> [1] 9.726825
#> 
#> $scale
#> [1] 14.74194
#> 
#> $smoothness
#> [1] 0.7231443
#> 
#> $nuggets
#> [1] 0.9498517
#> 
#> Regression coefficients (beta): 
#> $Y
#> named numeric(0)
#> 
#> $`(Intercept)`
#> (Intercept) 
#>    11.41328 
#> 
#> Model type: VecchiaModel 
#> Nearest neighbors: 10 
#> Scaling: 1 1 
#> Penalized likelihood: 486.3306 
#> MSE: 9.108079