This function is used to make predictions based on multivariate Vecchia
models. It is a multivariate version of
vecchia_prediction
.
Arguments
- z
The observed data.
- vecchia.approx
A Vecchia object returned by
vecchia_Mspecify
.- covparms
Vector of covariance parameters. See
create_param_sequence
or the examples below for details about the format of this vector.- var.exact
Should prediction variances by computed exactly, or is a (faster) approximation acceptable? See
vecchia_prediction
.- return.values
Values that should be returned. Possible values include "mean", "meanvar", "meanmat", and "all". See
vecchia_prediction
. Defaults to "mean".
Value
The posterior means/variances/V matrices at the observed and
unobserved locations. See vecchia_prediction
.
References
Katzfuss, M., and Guinness, J. "A general framework for Vecchia approximations of Gaussian processes", Statistical Science (2021) 36(1):124-141.
Katzfuss, M., Guinness, J., Gong, W. and Zilber, D. "Vecchia approximations of Gaussian-process predictions", Journal of Agricultural, Biological and Environmental Statistics (2020) 25:383-414.
Examples
data(soil)
soil <- soil[!is.na(soil[,5]),] # remove rows with NA's
locs <- as.matrix(soil[,1:2])
locsm <- list()
locsm[[1]] <- locsm[[2]] <- locs
locsp <- locsm
locsp[[1]] <- locsp[[1]] + 0.5
locsp[[2]] <- locsp[[2]] - 0.5
soil.vap <- vecchia_Mspecify(locsm, m=10, locs.list.pred=locsp)
pseq <- create_param_sequence(2)
# Initialize the vector of covariance parameters
params <- rep(NA, pseq[5,2])
# Sigma parameters:
params[pseq[1,1]:pseq[1,2]] <- c(100, 80)
# Scale parameters:
params[pseq[2,1]:pseq[2,2]] <- c(60, 50)
# Smoothness parameters:
params[pseq[3,1]:pseq[3,2]] <- c(0.5, 0.5)
# Nuggets:
params[pseq[4,1]:pseq[4,2]] <- c(30, 30)
# Correlation:
params[pseq[5,1]:pseq[5,2]] <- -0.9
soil.yhat <- vecchia_Mprediction(rnorm(nrow(locs)), soil.vap, params)