Sample from pre-generated C_ss
data
Arguments
- simulated_css
list of pre-generated
C_ss
data, for details see:vignette("package_data", package = "GeoTox")
.- age
list or atomic vector of ages.
- obesity
list or atomic vector of obesity status.
Value
list of matrices containing C_ss
values. Columns are sorted to have
consistent order across functions.
Examples
# Vector inputs
sample_Css(geo_tox_data$simulated_css,
c(15, 25, 35),
c("Normal", "Obese", "Normal"))
#> [[1]]
#> 100-02-7 101-14-4 101-77-9 106-50-3 119-90-4 120-80-9 123-31-9 133-06-2
#> [1,] 0.4032 0.06119 0.4044 0.04516 3.125 1.505 0.08384 4.1070
#> [2,] 0.8511 0.40070 1.5170 0.20540 8.311 1.713 0.30070 0.8906
#> [3,] 0.6539 0.39460 0.3364 0.68070 1.555 3.633 0.42150 1.9910
#> 510-15-6 53-96-3 56-38-2 60-11-7 63-25-2 72-43-5 84-74-2 87-86-5 88-06-2
#> [1,] 0.08366 0.6665 2.187 2.193 0.03733 3.545 2.067 5.036 0.7018
#> [2,] 0.07002 6.3640 1.945 4.409 0.21210 4.614 1.967 7.638 12.9700
#> [3,] 0.19310 3.7220 1.539 1.727 0.06266 4.898 0.985 9.054 1.5870
#> 91-94-1 92-87-5 95-80-7 95-95-4
#> [1,] 0.06077 0.3466 2.231 11.650
#> [2,] 0.19230 0.8108 1.401 17.550
#> [3,] 0.22590 2.6400 2.103 1.502
#>
# List inputs
sample_Css(geo_tox_data$simulated_css,
list(c(34, 29), 55),
list(c("Obese", "Normal"), "Normal"))
#> [[1]]
#> 100-02-7 101-14-4 101-77-9 106-50-3 119-90-4 120-80-9 123-31-9 133-06-2
#> [1,] 2.1290 0.3820 3.652 0.2247 6.800 0.8395 0.6320 2.746
#> [2,] 0.6427 0.1391 2.175 0.2645 3.766 3.4160 0.4531 1.364
#> 510-15-6 53-96-3 56-38-2 60-11-7 63-25-2 72-43-5 84-74-2 87-86-5 88-06-2
#> [1,] 0.4971 5.819 5.986 3.001 0.06565 4.73 1.1280 1.239 5.524
#> [2,] 0.1654 1.163 1.315 2.156 0.03879 265.30 0.9735 3.735 9.349
#> 91-94-1 92-87-5 95-80-7 95-95-4
#> [1,] 1.3720 1.2370 3.461 9.255
#> [2,] 0.0863 0.3199 4.240 5.488
#>
#> [[2]]
#> 100-02-7 101-14-4 101-77-9 106-50-3 119-90-4 120-80-9 123-31-9 133-06-2
#> [1,] 0.4114 0.2184 1.091 0.4477 3.899 0.7356 0.8564 11.01
#> 510-15-6 53-96-3 56-38-2 60-11-7 63-25-2 72-43-5 84-74-2 87-86-5 88-06-2
#> [1,] 0.09589 4.414 3.463 3.304 0.09706 3.237 1.294 2.108 1.301
#> 91-94-1 92-87-5 95-80-7 95-95-4
#> [1,] 0.1822 2.242 1.932 1.595
#>