Skip to contents

this function is developed to avoid random errors in compressing and decompressing R function objects with qs::qsave and qs::qread. If you encounter such errors, please use this function with function name strings to save and load the function objects.

Usage

unmarshal_function(pkg_func_str)

Arguments

pkg_func_str

Character string specifying the package and function.

Value

Function object.

Note

The function name string must include two colons ::. Also, the package preceding the two colons should be loaded in the current environment.

Examples

unmarshal_function("amadeus::process_aqs")
#> function (path = NULL, date = c("2018-01-01", "2022-12-31"), 
#>     mode = c("date-location", "available-data", "location"), 
#>     data_field = "Arithmetic.Mean", return_format = c("terra", 
#>         "sf", "data.table"), extent = NULL, ...) 
#> {
#>     mode <- match.arg(mode)
#>     return_format <- match.arg(return_format)
#>     if (!is.null(date)) {
#>         date <- try(as.Date(date))
#>         if (inherits(date, "try-error")) {
#>             stop("date has invalid format(s). Please check the values.")
#>         }
#>         if (length(date) != 2) {
#>             if (length(date) == 1) {
#>                 date <- c(date, date)
#>             }
#>             else {
#>                 stop("date should be a character vector of length 1 or 2.")
#>             }
#>         }
#>     }
#>     else {
#>         stop("date should be defined.")
#>     }
#>     if (length(path) == 1 && dir.exists(path)) {
#>         path <- list.files(path = path, pattern = "*.csv$", full.names = TRUE)
#>     }
#>     if (length(path) == 0) {
#>         stop("path does not contain csv files.")
#>     }
#>     pathfiles <- lapply(path, read.csv)
#>     sites <- data.table::rbindlist(pathfiles, fill = TRUE)
#>     sites$site_id <- sprintf("%02d%03d%04d%05d", as.integer(sites$State.Code), 
#>         as.integer(sites$County.Code), as.integer(sites$Site.Num), 
#>         as.integer(sites$Parameter.Code))
#>     site_id <- NULL
#>     Datum <- NULL
#>     POC <- NULL
#>     Date.Local <- NULL
#>     Sample.Duration <- NULL
#>     date_start <- as.Date(date[1])
#>     date_end <- as.Date(date[2])
#>     date_sequence <- seq(date_start, date_end, "day")
#>     date_sequence <- as.character(date_sequence)
#>     sites <- dplyr::ungroup(dplyr::mutate(dplyr::filter(dplyr::group_by(dplyr::filter(dplyr::filter(dplyr::as_tibble(sites), 
#>         as.character(Date.Local) %in% date_sequence), startsWith(Sample.Duration, 
#>         "24")), site_id), POC == min(POC)), time = Date.Local))
#>     col_sel <- c("site_id", "Longitude", "Latitude", "Datum")
#>     if (mode != "available-data") {
#>         sites_v <- unique(sites[, col_sel])
#>     }
#>     else {
#>         col_sel <- append(col_sel, "Event.Type")
#>         col_sel <- append(col_sel, "time")
#>         col_sel <- append(col_sel, data_field)
#>         sites_v <- dplyr::distinct(dplyr::select(sites, dplyr::all_of(col_sel)))
#>         sites_vdup <- dplyr::ungroup(dplyr::filter(dplyr::filter(dplyr::group_by(sites_v, 
#>             site_id, time), dplyr::n() > 1), !!dplyr::sym("Event.Type") == 
#>             "Excluded"))
#>         sites_v <- dplyr::anti_join(sites_v, sites_vdup, by = c("site_id", 
#>             "time", "Event.Type"))
#>     }
#>     names(sites_v)[2:3] <- c("lon", "lat")
#>     sites_v <- data.table::as.data.table(sites_v)
#>     sites_v <- sites_v[!grepl("^(02|15|72|78|6|80)", site_id), 
#>         ]
#>     sites_v_nad <- sites_v[sites_v$Datum == "NAD83", ]
#>     sites_v_nad <- terra::vect(sites_v_nad, keepgeom = TRUE, 
#>         crs = "EPSG:4269")
#>     sites_v_nad <- terra::project(sites_v_nad, "EPSG:4326")
#>     sites_v_nad <- as.data.frame(sites_v_nad)
#>     sites_v_wgs <- sites_v[sites_v$Datum == "WGS84"]
#>     final_sites <- data.table::rbindlist(list(sites_v_wgs, sites_v_nad), 
#>         fill = TRUE)
#>     final_sites <- final_sites[, grep("Datum", names(final_sites), 
#>         invert = TRUE), with = FALSE]
#>     if (mode == "date-location") {
#>         final_sites <- lapply(split(date_sequence, date_sequence), 
#>             function(x) {
#>                 fs_time <- final_sites
#>                 fs_time$time <- x
#>                 return(fs_time)
#>             })
#>         final_sites <- data.table::rbindlist(final_sites, fill = TRUE)
#>     }
#>     if (mode == "available-data") {
#>         final_sites <- unique(final_sites)
#>     }
#>     final_sites <- switch(return_format, terra = terra::vect(final_sites, 
#>         keepgeom = TRUE, crs = "EPSG:4326"), sf = sf::st_as_sf(final_sites, 
#>         remove = FALSE, dim = "XY", coords = c("lon", "lat"), 
#>         crs = "EPSG:4326"), data.table = final_sites)
#>     if (!is.null(extent)) {
#>         if (return_format == "data.table") {
#>             warning("Extent is not applicable for data.table. Returning data.table...\n")
#>             return(final_sites)
#>         }
#>         final_sites <- apply_extent(final_sites, extent)
#>     }
#>     return(final_sites)
#> }
#> <bytecode: 0x55bf32be1558>
#> <environment: namespace:amadeus>