Package index
-
attach_pred() - Combine base learner prediction values with testing data.
-
attach_xy() - Attach XY coordinates to a data frame
-
feature_raw_download() - Check file status and download if necessary
-
fl_dates() - Extract the first and last elements of a list
-
load_modis_files() - Load MODIS files from a specified path.
-
loadargs() - Load arguments from the formatted argument list file
-
read_locs() - Read AQS data
-
read_paths() - Read paths from a directory with a specific file extension
-
reduce_list() - Combine dynamically branched sublists based on common column names
-
set_args_calc() - Set arguments for the calculation process
-
set_args_download() - Generate argument list for raw data download
-
set_target_years() - Set which years to be processed
-
split_dates() - Split a date range into subranges
-
sys_beethoven() - Configure Library Paths and Environment Variables for Beethoven Workflow
-
unmarshal_function() - Unmarshal functions
-
calc_geos_strict() - Process atmospheric composition data by chunks
-
calc_gmted_direct() - Reflown gmted processing
-
calc_narr2() - Calculate aggregated values for specified locations
-
calc_tri_mod() - Modified isotropic Sum of Exponentially Decaying Contributions (SEDC) covariates
-
calculate() - Spatiotemporal covariate calculation
-
calculate_modis() - Calculate MODIS product covariates in multiple CPU threads
-
calculate_modis_direct() - Calculate MODIS from preprocessed file
-
export_tif() - Export preprocessed GeoTIFF file of one day MODIS product files
-
inject_calculate() - Injects the calculate function with specified arguments.
-
inject_geos() - Injects geographic information into a data frame
-
inject_gmted() - Injects GMTED data into specified locations
-
inject_match() - Injects the calculate function with matched arguments.
-
inject_modis() - Injects arguments into MODIS/VIIRS data processing function
-
inject_modis_par() - Injects arguments to parallelize MODIS/VIIRS data processing
-
inject_nlcd() - Inject arguments into NLCD calculation function for branching
-
par_narr() - Parallelize NARR feature calculation
-
process_counties() - Load county sf object
-
process_geos_bulk() - Process atmospheric composition data by chunks (v2)
-
process_narr2() - Process NARR Data (v2)
-
query_modis_files() - Identify MODIS files
-
sum_edc_mod() - Calculate isotropic Sum of Exponentially Decaying Contributions (SEDC) covariates
-
add_time_col() - Add Time Column
-
append_predecessors() - Append Predecessors
-
impute_all() - Impute missing values and attach lagged features
-
post_calc_autojoin() - Automatic joining by the time and spatial identifiers
-
post_calc_cols() - Post-calculation column renaming
-
post_calc_convert_time() - Convert time column to character
-
post_calc_df_year_expand() - Expand a data frame by year
-
post_calc_drop_cols() - Remove columns from a data frame based on regular expression patterns.
-
post_calc_join_yeardate() - Join a data.frame with a year-only date column to that with a full date column
-
post_calc_merge_all() - Merge spatial and spatiotemporal covariate data
-
post_calc_merge_features() - Merge input data.frame objects
-
post_calc_pca() - Post-calculation Principal Component Analysis
-
post_calc_unify_timecols() - Change time column name
-
post_calc_year_expand() - Map the available raw data years over the given period
-
reduce_merge() - Reduce and merge a list of data tables
-
reduce_merge_iter() - Reduce and merge a list of data tables
-
assign_learner_cv() - Shuffle cross-validation mode for each learner type
-
convert_cv_index_rset() - Generate manual rset object from spatiotemporal cross-validation indices
-
fit_base_learner() - Base learner: tune hyperparameters and retrieve the best model
-
fit_base_tune() - Tune base learner
-
fit_prediction() - Predict base learners at for cross validation folds.
-
generate_cv_index_sp() - Prepare spatial and spatiotemporal cross validation sets
-
generate_cv_index_spt() - Generate spatio-temporal cross-validation index with
spatialsample::spatial_block_cvand year-based temporal folds
-
generate_cv_index_ts() - Generate temporal cross-validation index
-
make_subdata() - Make sampled subdataframes for base learners
-
switch_generate_cv_rset() - Choose cross-validation strategy for the base learner
-
switch_model() - Define a base learner model based on parsnip and tune
-
vis_spt_rset() - Visualize the spatio-temporal cross-validation index
-
fit_meta_learner() - Fit meta learner
-
predict_meta_learner() - Predict meta learner
-
cov() - Calculate code coverage of the
beethovenpackage with thecontainer_models.sifcontainer.
-
divisor() - Get Divisors
-
interactive() - Open interactive session with
container.sifcontainer.
-
scancel() - Cancel current workflow.
-
test() - Run all tests within a single file from
tests/testthat/directory with thecontainer_models.sifcontainer.