Package index
-
attach_pred()
- Combine prediction values from base learners
-
attach_xy()
- Attach XY coordinates to a data frame
-
feature_raw_download()
- Check file status and download if necessary
-
fl_dates()
- Extract the first and last elements of a list
-
load_modis_files()
- Load MODIS files from a specified path.
-
loadargs()
- Load arguments from the formatted argument list file
-
pred_colname()
- Assign column name to base learner prediction based on hyperparameters.
-
read_locs()
- Read AQS data
-
read_paths()
- Read paths from a directory with a specific file extension
-
reduce_list()
- Combine dynamically branched sublists based on common column names
-
set_args_calc()
- Set arguments for the calculation process
-
set_args_download()
- Generate argument list for raw data download
-
set_slurm_resource()
- Set resource management for SLURM
-
set_target_years()
- Set which years to be processed
-
split_dates()
- Split a date range into subranges
-
unmarshal_function()
- Unmarshal functions
-
calc_geos_strict()
- Process atmospheric composition data by chunks
-
calc_gmted_direct()
- Reflown gmted processing
-
calc_narr2()
- Calculate aggregated values for specified locations
-
calculate()
- Spatiotemporal covariate calculation
-
calculate_modis()
- Calculate MODIS product covariates in multiple CPU threads
-
inject_calculate()
- Injects the calculate function with specified arguments.
-
inject_geos()
- Injects geographic information into a data frame
-
inject_gmted()
- Injects GMTED data into specified locations
-
inject_match()
- Injects the calculate function with matched arguments.
-
inject_modis()
- Injects arguments into MODIS/VIIRS data processing function
-
inject_modis_par()
- Injects arguments to parallelize MODIS/VIIRS data processing
-
inject_nlcd()
- Inject arguments into NLCD calculation function for branching
-
par_narr()
- Parallelize NARR feature calculation
-
process_counties()
- Load county sf object
-
process_geos_bulk()
- Process atmospheric composition data by chunks (v2)
-
process_narr2()
- Process NARR Data (v2)
-
query_modis_files()
- Identify MODIS files
-
add_time_col()
- Add Time Column
-
append_predecessors()
- Append Predecessors
-
impute_all()
- Impute missing values and attach lagged features
-
post_calc_autojoin()
- Automatic joining by the time and spatial identifiers
-
post_calc_convert_time()
- Convert time column to character
-
post_calc_df_year_expand()
- Expand a data frame by year
-
post_calc_drop_cols()
- Remove columns from a data frame based on regular expression patterns.
-
post_calc_join_yeardate()
- Join a data.frame with a year-only date column to that with a full date column
-
post_calc_merge_all()
- Merge spatial and spatiotemporal covariate data
-
post_calc_merge_features()
- Merge input data.frame objects
-
post_calc_unify_timecols()
- Change time column name
-
post_calc_year_expand()
- Map the available raw data years over the given period
-
reduce_merge()
- Reduce and merge a list of data tables
-
assign_learner_cv()
- Shuffle cross-validation mode for each learner type
-
convert_cv_index_rset()
- Generate manual rset object from spatiotemporal cross-validation indices
-
fit_base_learner()
- Base learner: tune hyperparameters and retrieve the best model
-
fit_base_tune()
- Tune base learner
-
generate_cv_index_sp()
- Prepare spatial and spatiotemporal cross validation sets
-
generate_cv_index_spt()
- Generate spatio-temporal cross-validation index with anticlust
-
generate_cv_index_ts()
- Generate temporal cross-validation index
-
make_subdata()
- Make sampled subdataframes for base learners
-
switch_generate_cv_rset()
- Choose cross-validation strategy for the base learner
-
switch_model()
- Define a base learner model based on parsnip and tune
-
vis_spt_rset()
- Visualize the spatio-temporal cross-validation index
-
fit_meta_learner()
- Fit meta learner
-
predict_meta_learner()
- Predict meta learner
-
divisor()
- Get Divisors