Skip to contents

Utility

Cleaning and adjusting data structure for succinct pipeline

attach_pred()
Combine prediction values from base learners
attach_xy()
Attach XY coordinates to a data frame
feature_raw_download()
Check file status and download if necessary
fl_dates()
Extract the first and last elements of a list
load_modis_files()
Load MODIS files from a specified path.
loadargs()
Load arguments from the formatted argument list file
pred_colname()
Assign column name to base learner prediction based on hyperparameters.
read_locs()
Read AQS data
read_paths()
Read paths from a directory with a specific file extension
reduce_list()
Combine dynamically branched sublists based on common column names
set_args_calc()
Set arguments for the calculation process
set_args_download()
Generate argument list for raw data download
set_slurm_resource()
Set resource management for SLURM
set_target_years()
Set which years to be processed
split_dates()
Split a date range into subranges
unmarshal_function()
Unmarshal functions

Calculation

Main calculation functions for branching, parallel processing, and parameter injection

calc_geos_strict()
Process atmospheric composition data by chunks
calc_gmted_direct()
Reflown gmted processing
calc_narr2()
Calculate aggregated values for specified locations
calculate()
Spatiotemporal covariate calculation
inject_calculate()
Injects the calculate function with specified arguments.
inject_geos()
Injects geographic information into a data frame
inject_gmted()
Injects GMTED data into specified locations
inject_match()
Injects the calculate function with matched arguments.
inject_modis_par()
Injects arguments to parallelize MODIS/VIIRS data processing
inject_nlcd()
Inject arguments into NLCD calculation function for branching
par_narr()
Parallelize NARR feature calculation
process_counties()
Load county sf object
process_geos_bulk()
Process atmospheric composition data by chunks (v2)
process_narr2()
Process NARR Data (v2)
query_modis_files()
Identify MODIS files

Post-calculation

Merging calculation results

add_time_col()
Add Time Column
append_predecessors()
Append Predecessors
impute_all()
Impute missing values and attach lagged features
post_calc_autojoin()
Automatic joining by the time and spatial identifiers
post_calc_convert_time()
Convert time column to character
post_calc_df_year_expand()
Expand a data frame by year
post_calc_drop_cols()
Remove columns from a data frame based on regular expression patterns.
post_calc_join_yeardate()
Join a data.frame with a year-only date column to that with a full date column
post_calc_merge_all()
Merge spatial and spatiotemporal covariate data
post_calc_merge_features()
Merge input data.frame objects
post_calc_unify_timecols()
Change time column name
post_calc_year_expand()
Map the available raw data years over the given period
reduce_merge()
Reduce and merge a list of data tables

Base learner

Fitting base learner and helper functions

assign_learner_cv()
Shuffle cross-validation mode for each learner type
convert_cv_index_rset()
Generate manual rset object from spatiotemporal cross-validation indices
fit_base_learner()
Base learner: tune hyperparameters and retrieve the best model
fit_base_tune()
Tune base learner
generate_cv_index_sp()
Prepare spatial and spatiotemporal cross validation sets
generate_cv_index_spt()
Generate spatio-temporal cross-validation index with anticlust
generate_cv_index_ts()
Generate temporal cross-validation index
make_subdata()
Make sampled subdataframes for base learners
switch_generate_cv_rset()
Choose cross-validation strategy for the base learner
switch_model()
Define a base learner model based on parsnip and tune
vis_spt_rset()
Visualize the spatio-temporal cross-validation index

Meta learner

Fitting meta learner

fit_meta_learner()
Fit meta learner
predict_meta_learner()
Predict meta learner

Miscellaneous

Miscellaneous functions for general use

divisor()
Get Divisors