Skip to contents

Get C_ss values for use in sensitivity_analysis and compute_sensitivity.

Usage

get_fixed_css(simulated_css, age, obesity, C_ss)

Arguments

simulated_css

list of pre-generated C_ss data, for details see: vignette("package_data", package = "GeoTox").

age

list of atomic vectors containing ages.

obesity

list of atomic vectors containing obesity status.

C_ss

list of matrices containing C_ss values.

Value

list of matrices or atomic vectors containing C_ss values.

Examples

# Define inputs
age <- list(c(25, 35, 55),
            c(15, 60))
obesity <- list(c("Obese", "Normal", "Obese"),
                c("Normal", "Normal"))
C_ss <- sample_Css(simulated_css = geo_tox_data$simulated_css,
                   age = age,
                   obesity = obesity)

# Get fixed C_ss data
get_fixed_css(simulated_css = geo_tox_data$simulated_css,
              age = age,
              obesity = obesity,
              C_ss = C_ss)
#> $age
#> $age[[1]]
#>      87-86-5 95-95-4 133-06-2 101-14-4 63-25-2 510-15-6 106-50-3 91-94-1
#> [1,]  5.6245   6.656   2.3210  0.20555 0.10435  0.11010  0.35850  0.1832
#> [2,]  6.7320   8.194   3.0145  0.26055 0.13450  0.14015  0.48860  0.2070
#> [3,]  9.7745  10.615   3.7720  0.34805 0.18920  0.21190  0.66345  0.2928
#>      84-74-2 120-80-9 100-02-7 119-90-4 123-31-9 60-11-7 95-80-7 88-06-2
#> [1,]  1.2445   1.4985  0.84285   6.7105  0.30055  2.2450  3.4785  3.3765
#> [2,]  1.6280   1.9545  1.17400   7.3715  0.39220  2.7920  3.8750  4.4375
#> [3,]  2.2435   2.5475  1.44250   8.6155  0.53005  3.6225  4.6450  6.2555
#>      92-87-5 101-77-9 53-96-3 72-43-5 56-38-2
#> [1,]  1.0200   1.3740   3.187  4.7235  2.6265
#> [2,]  1.2380   1.6265   3.648  5.8290  3.2970
#> [3,]  1.5575   2.1620   4.755  7.8175  4.3650
#> 
#> $age[[2]]
#>      87-86-5 95-95-4 133-06-2 101-14-4  63-25-2 510-15-6 106-50-3 91-94-1
#> [1,]  4.3915  4.7355   1.7015  0.16175 0.073885 0.089035  0.27315  0.1245
#> [2,]  9.7745 10.6150   3.7720  0.34805 0.189200 0.211900  0.66345  0.2928
#>      84-74-2 120-80-9 100-02-7 119-90-4 123-31-9 60-11-7 95-80-7 88-06-2
#> [1,] 0.97755   1.1135  0.68195   5.3505  0.20900  1.6395   2.781  2.6675
#> [2,] 2.24350   2.5475  1.44250   8.6155  0.53005  3.6225   4.645  6.2555
#>      92-87-5 101-77-9 53-96-3 72-43-5 56-38-2
#> [1,]  0.7936    1.023   2.194  3.9780  1.9685
#> [2,]  1.5575    2.162   4.755  7.8175  4.3650
#> 
#> 
#> $params
#> $params[[1]]
#>      87-86-5 95-95-4 133-06-2 101-14-4 63-25-2 510-15-6 106-50-3 91-94-1
#> [1,]   3.720 25.9000    4.800  0.07592 0.29870  0.23420   0.7295 0.14230
#> [2,]   2.488  0.8094   22.560  0.23280 0.05003  0.02254   0.2919 0.07566
#> [3,]   4.384  1.6220    1.325  0.12190 0.08474  0.06052   1.0870 0.11880
#>      84-74-2 120-80-9 100-02-7 119-90-4 123-31-9 60-11-7 95-80-7 88-06-2
#> [1,]   1.680    1.089   4.5530   21.360   0.3849  1.5030   2.979  20.780
#> [2,]   1.974    1.475   1.1020    1.717   0.3452  0.5761   2.150   1.355
#> [3,]   1.212    1.341   0.9264   11.510   0.2517  7.2560   2.450   2.109
#>      92-87-5 101-77-9 53-96-3 72-43-5 56-38-2
#> [1,]  0.7866   0.3238   2.186  0.9258  0.8813
#> [2,]  1.3160   1.0380   3.410  3.8810  1.5600
#> [3,]  1.0760   1.9520   4.217  5.9390  3.1460
#> 
#> $params[[2]]
#>      87-86-5 95-95-4 133-06-2 101-14-4 63-25-2 510-15-6 106-50-3 91-94-1
#> [1,]   2.276   2.578   0.4497   0.4456 0.07661   0.1058   0.2782  0.1107
#> [2,]  16.200   7.308   2.9800   0.5936 1.45200   0.1064   0.6615  0.1498
#>      84-74-2 120-80-9 100-02-7 119-90-4 123-31-9 60-11-7 95-80-7 88-06-2
#> [1,]  1.4790   0.5304   0.2464    5.750  0.08054   1.703  23.150   14.06
#> [2,]  0.5934   2.4130   0.6624    3.265  0.12990   4.181   1.659   14.13
#>      92-87-5 101-77-9 53-96-3 72-43-5 56-38-2
#> [1,]   1.743   0.8955   1.574   8.728   2.302
#> [2,]   2.014   1.0190  10.580   3.001   1.525
#> 
#> 
#> $obesity
#> $obesity[[1]]
#>      87-86-5 95-95-4 133-06-2 101-14-4 63-25-2 510-15-6 106-50-3 91-94-1
#> [1,]  7.4820  8.6775    2.965  0.28405  0.1432 0.153750   0.5077 0.22425
#> [2,]  4.4205  4.9300    1.849  0.16290  0.0820 0.088135   0.3035 0.12915
#> [3,]  7.4820  8.6775    2.965  0.28405  0.1432 0.153750   0.5077 0.22425
#>      84-74-2 120-80-9 100-02-7 119-90-4 123-31-9 60-11-7 95-80-7 88-06-2
#> [1,]   1.726   2.0710   1.1730   7.3635   0.4089  2.9815   3.926   4.751
#> [2,]   1.037   1.2025   0.7162   5.8545   0.2387  1.7780   2.953   2.757
#> [3,]   1.726   2.0710   1.1730   7.3635   0.4089  2.9815   3.926   4.751
#>      92-87-5 101-77-9 53-96-3 72-43-5 56-38-2
#> [1,] 1.31000    1.758  3.8180  6.3620  3.6535
#> [2,] 0.80915    1.087  2.3715  3.7635  2.1955
#> [3,] 1.31000    1.758  3.8180  6.3620  3.6535
#> 
#> $obesity[[2]]
#>      87-86-5 95-95-4 133-06-2 101-14-4 63-25-2 510-15-6 106-50-3 91-94-1
#> [1,]  4.4205    4.93    1.849   0.1629   0.082 0.088135   0.3035 0.12915
#> [2,]  4.4205    4.93    1.849   0.1629   0.082 0.088135   0.3035 0.12915
#>      84-74-2 120-80-9 100-02-7 119-90-4 123-31-9 60-11-7 95-80-7 88-06-2
#> [1,]   1.037   1.2025   0.7162   5.8545   0.2387   1.778   2.953   2.757
#> [2,]   1.037   1.2025   0.7162   5.8545   0.2387   1.778   2.953   2.757
#>      92-87-5 101-77-9 53-96-3 72-43-5 56-38-2
#> [1,] 0.80915    1.087  2.3715  3.7635  2.1955
#> [2,] 0.80915    1.087  2.3715  3.7635  2.1955
#> 
#> 
#> $other
#> $other[[1]]
#> [1] 2.588 2.588 2.588
#> 
#> $other[[2]]
#> [1] 1.381 1.381
#> 
#>